Thursday, July 2, 2009

Break The Ice - Nasa Airborne Radars!

0 comments
Arctic Trek to 'Break the Ice' on New NASA Airborne Radars!

PASADENA, Calif. Says - NASA will 'break the ice' on a pair of new airborne radars that can help monitor climate change when a team of scientists embarks this week on a two-month expedition to the vast, frigid terrain of Greenland and Iceland.

Scientists from NASA's Jet Propulsion Laboratory, Pasadena, Calif., and Dryden Flight Research Center, Edwards, Calif., will depart Dryden Friday, May 1, on a modified NASA Gulfstream III aircraft. In a pod beneath the aircraft's fuselage will be two JPL-developed radars that are flying test beds for evaluating tools and technologies for future space-based radars.

One of the radars, the L-band wavelength Uninhabited Aerial Vehicle Synthetic Aperture Radar, or UAVSAR, calibrates and supplements satellite data; the other is a proof-of-concept Ka-band wavelength radar called the Glacier and Land Ice Surface Topography Interferometer, or GLISTIN.

Both radars use pulses of microwave energy to produce images of Earth's surface topography and the deformations in it. UAVSAR detects and measures the flow of glaciers and ice sheets, as well as subtle changes caused by earthquakes, volcanoes, landslides and other dynamic phenomena. GLISTIN will create high-resolution maps of ice surface topography, key to understanding the stresses that drive changes in glacial regions.

During this expedition, UAVSAR will study the flow of Greenland's and Iceland's glaciers and ice streams, while GLISTIN will map Greenland's icy surface topography. About 250,000 square kilometers (97,000 square miles) of land will be mapped during 110 hours of data collection.

"We hope to better characterize how Arctic ice is changing and how climate change is affecting the Arctic, while gathering data that will be useful for designing future radar satellites," said UAVSAR Principal Investigator Scott Hensley of JPL.

The Gulfstream III flies at an altitude of 12,500 meters (41,000 feet) as UAVSAR collects data over areas of interest. The aircraft then flies over the same areas again, minutes to months later, using precision navigation to fly within 4.6 meters (15 feet) of its original flight path. By comparing the data from multiple passes, scientists can detect very subtle changes in Earth's surface.

L-band Principal Investigator Howard Zebker of Stanford University, Palo Alto, Calif., and his team will use UAVSAR to collect data on various types of ice. They will measure how deeply the L-band radar penetrates the ice and compare it with similar C- and X-band radar data collected from satellites. Scientists expect the longer wavelengths of the L-band radar to penetrate deeper into the ice than C-band radar, "seeing" ice motions or structures hundreds of meters below the ice surface, rather than only at the surface. By using both wavelengths, scientists hope to obtain a more complete picture of how glaciers and ice streams flow. Zebker's team will also evaluate how sensitive the L-band radar is to changes in the ice surface between observations.

To better predict how glaciers and ice sheets will evolve, scientists need to know what they're doing now, how fast they're changing, what processes drive the changes and how to represent them in models. Accurate measurements of ice sheet elevation derived from laser altimeters (lidars) on aircraft or satellites are critical to these efforts. But high-frequency microwave radars can also do the job, with greater coverage and the ability to operate in a wider range of weather conditions. Until now, however, microwave radars operating at wavelengths longer than those of GLISTIN have penetrated snow and ice more deeply than lidars, making interpretation of their data more complex.

0 comments:

Post a Comment