Friday, December 31, 2010

'S' is for Space Station

0 comments

Astronauts aboard the International Space Station are helping children learn their ABC's and vocabulary through educational demonstrations of how they live and work in space.

NASA collaborated with Sesame Workshop, including the popular children’s television programs, "Sesame Street" and "The Electric Company," to create science, technology, engineering and math-related education resources, or STEM, for children ages 2-5.

"The space station environment provides a unique classroom in space to teach young children about the words such as 'float' and 'astronaut' by showing them how astronauts float in space," said Matthew Keil in the Teaching from Space Office at NASA's Johnson Space Center in Houston.


Space station astronaut Soichi Noguchi completed four educational videos for "Sesame Street" during his stay on the International Space Station from December 2009 to June 2010. The four videos are airing on "Sesame Street" throughout the fall 2010 season. On the episode "F is for Float" -- show number 4214 -- Noguchi held up the letter "F" to represent the word "float" while he floated around the space station to demonstrate the word.

"Word on the Street" -- show number 4222 -- featured Noguchi explaining to the character "Murray" what the word "float" means, using similar demonstrations with a lemon, socks and a ball.

On the episode "A is for Astronaut" -- show number 4225 -- Noguchi held up the letter "A" to represent the word "astronaut." Noguchi sounded out the letter and the word for children.

On the "Countdown to Space" episode -- show number 4234 airing on PBS December 27 -- Noguchi counted down from 10 to one. Noguchi counted down and said "blast-off!" while floating from the floor to the ceiling.

Sesame Workshop approached the NASA Teaching from Space Office for assistance in implementing more science and math curriculum into their programming by using the unique educational environment of the space station, NASA centers and facilities and the unique people who work at NASA.

"I am an educator who is very interested in making connections between curriculum and everyday life experiences that students encounter," said Keil. "There are many teachable moments that exist in every NASA mission. Our job is to make sure educators and students are aware of these moments and assist them in connecting these moments to what they are teaching or learning in school and at home."

Tuesday, December 28, 2010

Where Over the World is Commander Scott Kelly?

0 comments
NASA astronaut Scott Kelly.
Commander Scott Kelly is living off the planet aboard the International Space Station for a period of nearly six months. Traveling the world more than 230 miles above Earth and at 17,500 mph, he circumnavigates the globe more than a dozen times a day. During his stay on station, he will have opportunities to see and photograph various geographical locations on Earth from space. In fact, part of his job while in space will be to capture a kaleidoscope of geographical spots for Earth scientific observations.

› View the Geography Trivia Contest Winners page
› Read the press release

Through these snapshots, Commander Kelly will share his view from space and also engage the public by way of a virtual journey around the world via a geography trivia game on Twitter.
NASA astronaut Scott Kelly.

How to play: Users follow @StationCDRKelly, who will tweet from space a photo during the Expedition 25/26 flight. The first person to @reply to @StationCDRKelly with the correct answer wins. Use the hashtag #spacegeo after your reply and to follow the geography game on Twitter from space. Players are competing to be the first to name that inkblot of Earth from space to win a printed photo of the shot taken from space and autographed by astronaut Kelly after his return to Earth. At the end of each week, the trivia photo will be posted to nasa.gov along with the winner’s name.

A Galaxy for Everyone

0 comments
A Galaxy for Everyone
This collage of galaxies from NASA's Wide-Field Infrared Survey Explorer, or WISE, showcases the many "flavors" that galaxies come in, from star-studded spirals to bulging ellipticals to those paired with other companion galaxies. The WISE team put this collage together to celebrate the anniversary of the mission's launch on Dec. 14, 2009.

After launch and a one-month checkout period, WISE began mapping the sky in infrared light. By July of this year, the entire sky had been surveyed, detecting hundreds of millions of objects, including the galaxies pictured here. In October of this year, after scanning the sky about one-and–a-half times, the spacecraft ran out of its frozen coolant, as planned. With its two shortest-wavelength infrared detectors still operational, the mission continues to survey the sky, focusing primarily on asteroids and comets.

NGC 300 is seen in the image in the upper left panel. This is a textbook spiral galaxy. In fact, it is such a good representation of a spiral galaxy that astronomers have studied it in great detail to learn about the structure of all spirals in general. Infrared images like this one from WISE show astronomers where areas of gas and warm dust are concentrated -- features that cannot be seen in visible light. At about 39,000 light-years across, NGC 300 is only about 40 percent the size of the Milky Way galaxy.

The upper right image shows Messier 104, or M104, also known as the Sombrero galaxy. Although M104 is also classified as a spiral galaxy, it has a very different appearance than NGC 300. In part, this is because the dusty, star-forming spiral disk in M104 is seen nearly edge-on from our point of view. M104 also has a large, ball-shaped bulge component of older stars, seen here in blue.

The large, fuzzy grouping of stars at the center of the lower left panel is the galaxy Messier 60, or M60. This galaxy does not have a spiral disk, just a bulge, making it a massive elliptical galaxy. M60 is about 20 percent larger than our Milky Way galaxy, and lies in the Virgo cluster of galaxies. The brighter, dense spot inside but off-center from the blue core of M60 is a separate spiral galaxy called NGC 4647. In addition, two different asteroids were caught crossing the field of view when WISE imaged this portion of the sky (seen as dotted green lines extending out from M60 at about the 2 o'clock and 8 o'clock positions).

The galaxy in the lower right panel is Messier 51, or NGC 5194, also frequently referred to as the Whirlpool galaxy. The Whirlpool is a "grand design" spiral galaxy. It is interacting with its smaller companion -- NGC 5195, a dwarf galaxy, which can be seen as a bright spot near the tip of the spiral arm extending up and to the right of the Whirlpool galaxy.

Thursday, December 23, 2010

Mars Movie - I'm Dreaming of a Blue Sunset

0 comments
I'm Dreaming of a Blue Sunset
A new Mars movie clip gives us a rover's-eye view of a bluish Martian sunset, while another clip shows the silhouette of the moon Phobos passing in front of the sun.

America's Mars Exploration Rover Opportunity, carefully guided by researchers with an artistic sense, has recorded images used in the simulated movies.

These holiday treats from the rover's panoramic camera, or Pancam, offer travel fans a view akin to standing on Mars and watching the sky.

"These visualizations of an alien sunset show what it must have looked like for Opportunity, in a way we rarely get to see, with motion," said rover science team member Mark Lemmon of Texas A&M University, College Station. Dust particles make the Martian sky appear reddish and create a bluish glow around the sun.

Lemmon worked with Pancam Lead Scientist Jim Bell, of Cornell University, Ithaca, N.Y., to plot the shots and make the moving-picture simulation from images taken several seconds apart in both sequences.

The sunset movie, combining exposures taken Nov. 4 and Nov. 5, 2010, through different camera filters, accelerates about 17 minutes of sunset into a 30-second simulation. One of the filters is specifically used to look at the sun. Two other filters used for these shots provide color information. The rover team has taken Pancam images of sunsets on several previous occasions, gaining scientifically valuable information about the variability of dust in the lower atmosphere. The new clip is the longest sunset movie from Mars ever produced, taking advantage of adequate solar energy currently available to Opportunity.


The two Martian moons are too small to fully cover the face of the sun, as seen from the surface of Mars, so these events -- called transits or partial eclipses -- look quite different from a solar eclipse seen on Earth. Bell and Lemmon chose a transit by Phobos shortly before the Mars sunset on Nov. 9, 2010, for a set of Pancam exposures taken four seconds apart and combined into the new, 30-second, eclipse movie. Scientifically, images years apart that show Phobos' exact position relative to the sun at an exact moment in time aid studies of slight changes in the moon's orbit. This, in turn, adds information about the interior of Mars.

The world has gained from these movies and from more than a quarter million other images from Opportunity and its twin, Spirit, since they landed on Mars in January 2004. Those gains go beyond the facts provided for science.

Bell said, "For nearly seven years now, we've been using the cameras on Spirit and Opportunity to help us experience Mars as if we were there, viewing these spectacular vistas for ourselves. Whether it's seeing glorious sunsets and eclipses like these, or the many different and lovely sandy and rocky landscapes that we've driven through over the years, we are all truly exploring Mars through the lenses of our hardy robotic emissaries.

"It reminds me of a favorite quote from French author Marcel Proust: 'The real voyage of discovery consists not in seeking new landscapes, but in having new eyes,'" he added.

Wednesday, December 22, 2010

Cassini Finishes Sleigh Ride by Icy Moons

0 comments
Cassini Finishes Sleigh Ride by Icy Moons
On the heels of a successful close flyby of Saturn's moon Enceladus, NASA's Cassini spacecraft is returning images of Enceladus and the nearby moon Dione.

Several pictures show Enceladus backlit, with the dark outline of the moon crowned by glowing jets from the south polar region. The images show several separate jets, or sets of jets, emanating from the fissures known as "tiger stripes." Scientists will use the images to pinpoint the jet source locations on the surface and learn more about their shape and variability.

The Enceladus flyby took Cassini within about 48 kilometers (30 miles) of the moon's northern hemisphere. Cassini's fields and particles instruments worked on searching for particles that may form a tenuous atmosphere around Enceladus. They also hope to learn whether those particles may be similar to the faint oxygen- and carbon-dioxide atmosphere detected recently around Rhea, another Saturnian moon. The scientists were particularly interested in the Enceladus environment away from the jets emanating from the south polar region. Scientists also hope this flyby will help them understand the rate of micrometeoroid bombardment in the Saturn system and get at the age of Saturn's main rings.

This flyby of Enceladus, the 13th in Cassini's mission, took a similar path to the last Enceladus flyby on Nov. 30. About eight hours before the Enceladus flyby, Cassini also swung past Dione at a distance of about 100,000 kilometers (62,000 miles). During that flyby, the spacecraft snapped clear, intriguing images of the bright, fractured region known as the "wispy terrain." These features are tectonic ridges and faults formed by geologic activity on the moon sometime in the past. Scientists will now be able to measure the depth and extent of them more accurately.
Cassini Finishes Sleigh Ride by Icy Moons

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C.

Monday, December 20, 2010

Cassini Takes Close-Up of Enceladus Northern Hemisphere

0 comments
 NASA's Cassini spacecraft
NASA's Cassini spacecraft will be making its close flyby of the northern hemisphere of Saturn's moon Enceladus today, Monday, Dec. 20. The closest approach will take place at 5:08 PM PST (8:08 EST) on Dec. 20, or 1:08 AM UTC on Dec. 21. The spacecraft will zip by at an altitude of about 48 kilometers (30 miles) above the icy moon's surface.

Cassini's fields and particles instruments will get priority during this flyby. They will be trying to characterize the particles that may form a tenuous atmosphere around Enceladus and see if they may be similar to the faint oxygen- and carbon-dioxide atmosphere detected recently around Rhea, another Saturnian moon. The instruments will be particularly interested in the Enceladus environment away from the jets emanating from the south polar region. A goal of the observations will be to try to measure the rate of dust coming off the moon from the bombardment of micrometeoroids alone. These measurements will help scientists understand the rate of micrometeoroid bombardment in the Saturn system, which will help them get at the age of Saturn's main rings.

The composite infrared spectrometer and imaging cameras will also be active, looking for additional hot spots on the moon and taking pictures of some regions at a higher resolution than is currently available.

This is the 13th flyby of Enceladus in Cassini's mission and takes a similar path to the last Enceladus flyby.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif. manages the mission for NASA's Science Mission Directorate, Washington, D.C.

Wednesday, December 15, 2010

NASA Scientists Theorize Final Growth Spurt for Planets

0 comments
NASA Scientists Theorize Final Growth Spurt for Planets
A team of NASA-funded researchers has unveiled a new theory that contends planets gained the final portions of their mass from a limited number of large comet or asteroid impacts more than 4.5 billion years ago. These impacts added less than one percent of the planets' mass.

Scientists hope the research not only will provide a better historical picture of the birth and evolution of Earth, the moon and Mars, but also allow researchers to better explore what happened in our solar system's beginning and middle stages of planet formation.

“No one has a model of precisely what happened at the end of planet formation—we’ve had a broad idea—but variables such as impactor size, the approximate timing of the impacts, and how they affect the evolution of the planets are unknown,” said William Bottke, principal investigator from the Southwest Research Institute (SWRI) in Boulder, Colo. “This research hopefully provides better insights into the early stages of planet formation.”

The team used numerical models, lunar samples returned by Apollo astronauts and meteorites believed to be from Mars to develop its findings. The scientists examined the abundances of elements such as gold and platinum in the mantles, or layers beneath the crust, of Earth, the moon and Mars. Consistent with previous studies, they concluded the elements were added by a process called late accretion during a planet's final growth spurt.

"These impactors probably represent the largest objects to hit Earth since the giant impact that formed our moon," Bottke said. “They also may be responsible for the accessible abundance of gold, platinum, palladium, and other important metals used by our society today in items ranging from jewelry to our cars’ catalytic convertors.”

The results indicate the largest Earth impactor was between 1,500 - 2,000 miles in diameter, roughly the size of Pluto. Because it is smaller than Earth, the moon avoided such enormous projectiles and was only hit by impactors 150 - 200 miles wide. These impacts may have played important roles in the evolution of both worlds. For example, the projectiles that struck Earth may have modified the orientation of its spin axis by 10 degrees, while those that hit the moon may have delivered water to its mantle.

"Keep in mind that while the idea the Earth-moon system owes its existence to a single, random event was initially viewed as radical, it is now believed that large impacts were commonplace during the final stages of planet formation,’ Bottke said. “Our new results provide additional evidence that the effects of large impacts did not end with the moon-forming event."

The paper, "Stochastic Late Accretion to the Earth, Moon, and Mars," was published in the Dec. 9 issue of Science. It was written by Bottke and David Nesvorny of SWRI; Richard J. Walker of the University of Maryland; James Day of the University of Maryland and Scripps Institution of Oceanography, University of California, San Diego; and Linda Elkins-Tanton of the Massachusetts Institute of Technology. The research is funded by the NASA Lunar Science Institute (NLSI) at the agency's Ames Research Center in Moffett Field, Calif.

The NLSI is a virtual organization that enables collaborative, interdisciplinary research in support of NASA lunar science programs. The institute uses technology to bring scientists together around the world and comprises competitively selected U.S. teams and several international partners. NASA's Science Mission Directorate and the Exploration Systems Mission Directorate at the agency's Headquarters in Washington, funds the institute, which is managed by a central office at Ames.

Monday, December 13, 2010

WISE Sees an Explosion of Infrared Light

0 comments
WISE Sees an Explosion
A circular rainbow appears like a halo around an exploded star in this new view of the IC 443 nebula from NASA's Wide-field Infrared Survey Explorer, or WISE.

When massive stars die, they explode in tremendous blasts, called supernovae, which send out shock waves. The shock waves sweep up and heat surrounding gas and dust, creating supernova remnants like the one pictured here. The supernova in IC 443 happened somewhere between 5,000 and 10,000 years ago.

In this WISE image, infrared light has been color-coded to reveal what our eyes cannot see. The colors differ primarily because materials surrounding the supernova remnant vary in density. When the shock waves hit these materials, different gases were triggered to release a mix of infrared wavelengths.

The supernova remnant's northeastern shell, seen here as the violet-colored semi-circle at top left, is composed of sheet-like filaments that are emitting light from iron, neon, silicon and oxygen gas atoms and dust particles heated by a fast shock wave traveling at about 100 kilometers per second, or 223,700 mph.

The smaller southern shell, seen in bright bluish colors, is constructed of clumps and knots primarily emitting light from hydrogen gas and dust heated by a slower shock wave traveling at about 30 kilometers per second, or 67,100 miles per hour. In the case of the southern shell, the shock wave is interacting with a nearby dense cloud. This cloud can be seen in the image as the greenish dust cutting across IC 443 from the northwest to southeast.

IC 443 can be found near the star Eta Geminorum, which lies near Castor, one of the twins in the constellation Gemini.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages and operates the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and http://www.jpl.nasa.gov/wise .

Sunday, December 12, 2010

Pits, Flows, Other Scenes in New Set of Mars Images

0 comments
Pits, Flows, Other Scenes
Newly released images from 340 recent observations of Mars by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter show details of a wide assortment of Martian environments.

Strewn boulders and rippled sand lie on the floors of two shadowy, steep-walled pits. Mounds in another region appear to be mud volcanoes, which may have brought fine-grained material to the surface from deep underground. In the Tharsis volcanic region, the intersection of a lava flow with a trough caused by ground collapse allows seeing whether the flow happened before or after the collapse.

These and thousands of other images from HiRISE observations between Oct. 1 and Nov. 1, 2010, are now available on NASA's Planetary Data System (http://pds.jpl.nasa.gov/) and the camera team's website (http://hirise.lpl.arizona.edu).

The camera is one of six instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006. It has made more than 17,000 observations. Each observation covers an area of several square miles on Mars and reveals details as small as desks.

Friday, December 10, 2010

NASA Aids in Characterizing Super-Earth Atmosphere

0 comments
Super-Earth Atmosphere
PASADENA, Calif. -- A team of astronomers, including two NASA Sagan Fellows, has made the first characterizations of a super-Earth's atmosphere, by using a ground-based telescope. A super-Earth is a planet up to three times the size of Earth and weighing up to 10 times as much. The findings, reported in the Dec. 2 issue of the journal Nature, are a significant milestone toward eventually being able to probe the atmospheres of Earth-like planets for signs of life.

The team determined the planet, GJ 1214b, is either blanketed with a thin layer of water steam or surrounded by a thick layer of high clouds. If the former, the planet itself would have an icy composition. If the latter, the planet would be rocky or similar to the composition of Neptune, though much smaller.

"This is the first super-Earth known to have an atmosphere," said Jacob Bean, a NASA Sagan Fellow and astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But even with these new measurements, we can't say yet what that atmosphere is made of. This world is being very shy and veiling its true nature from us."

GJ 1214b, first discovered in December 2009, is 2.7 times the size of Earth and 6.5 times as massive. Previous observations of the planet's size and mass demonstrated it has a low density for its size, leading astronomers to conclude the planet is some kind of solid body with an atmosphere.

The planet orbits close to its dim star, at a distance of 0.014 astronomical units. An astronomical unit is the distance between Earth and the sun, approximately 93 million miles. GJ 1214b circles too close to its star to be habitable by any life forms.

Bean and his team observed infrared light as the planet crossed in front of its star. During such transits, the star's light filters through the atmosphere. Gases absorb the starlight at particular wavelengths, leaving behind chemical fingerprints detectable from Earth. This same type of technique has been used to study the atmospheres of distant "hot Jupiters," or Jupiter-like planets orbiting close to their stars, and found gases like hydrogen, methane and sodium vapor.

In the case of the super-Earth, no chemical fingerprints were detected; however, this doesn't mean there are no chemicals present. Instead, this information ruled out some possibilities for GJ 1214b's atmosphere, and narrowed the scope to either an atmosphere of water steam or high clouds. Astronomers believe it's more likely the atmosphere is too thin around the planet to let enough light filter through and reveal chemical fingerprints.

"A steamy atmosphere would have to be very dense – about one-fifth water vapor by volume -- compared to our Earth, with an atmosphere that's four-fifths nitrogen and one-fifth oxygen with only a touch of water vapor," Bean said. "During the next year, we should have some solid answers about what this planet is truly like."

The team, which included Bean's co-authors -- Eliza Miller-Ricci Kempton, a NASA Sagan Fellow at the University of California in Santa Cruz, and Derek Homeier of the Institute for Astrophysics in Gottingen, Germany -- examined GJ 1214b using the ground-based Very Large Telescope at Paranal Observatory in Chile.

"This is an important step forward, narrowing our understanding of the atmosphere of this planet," said NASA Exoplanet Exploration Program Scientist Douglas Hudgins at NASA Headquarters in Washington. "Bizarre worlds like this make exoplanet science one of the most compelling areas in astrophysics today."

The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena. Its purpose is to advance the scientific and technical goals of NASA's Exoplanet Exploration Program. The program is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif. Caltech manages JPL for NASA.

Thursday, December 9, 2010

So you Think you can Solve a Cosmology Puzzle?

0 comments
Solve a Cosmology Puzzle?
Cosmologists have come up with a new way to solve their problems. They are inviting scientists, including those from totally unrelated fields, to participate in a grand competition. The idea is to spur outside interest in one of cosmology's trickiest problems -- measuring the invisible dark matter and dark energy that permeate our universe.

The results will help in the development of new space missions, designed to answer fundamental questions about the history and fate of our universe.

"We're hoping to get more computer scientists interested in our work," said cosmologist Jason Rhodes of NASA's Jet Propulsion Laboratory in Pasadena, Calif., who is helping to organize the challenge, which begins on Dec. 3, 2010. "Some of the mathematical problems in our field are the same as those in machine-learning applications -- for example facial-recognition software."

JPL and several European Universities, including The University of Edinburgh and University College London in the United Kingdom, are helping to support the event, which is funded by a European Union group called Pattern Analysis, Statistical Modelling and Computation Learning. The principal investigator is Thomas Kitching of the University of Edinburgh.

This year, the competition, which has operated since 2008, is called GREAT 2010, after GRavitational lEnsing Accuracy Testing. The challenge is to solve a series of puzzles involving distorted images of galaxies. Occasionally in nature, a galaxy is situated behind a clump of matter that is causing the light from the galaxy to bend. The result is a magnified and skewed image of the galaxy. In the most extreme cases, the warping results in multiple images and even a perfect ring, called an Einstein Ring after Albert Einstein, who predicted the effect. But most of the time, the results are more subtle and a galaxy image is distorted just a tiny bit -- not even enough to be perceived by eye. This is called weak gravitational lensing, or just weak lensing for short.

Weak lensing is a powerful tool for unlocking the fabric of our universe. Only four percent of our universe consists of the stuff that makes up people, stars and anything with atoms. Twenty-four percent is dark matter -- a mysterious substance that we can't see but which tugs on the regular matter we can see. Most of our universe, 72 percent, consists of dark energy, which is even more baffling than dark matter. Dark energy is gravity's nemesis -- where gravity pulls, dark energy pushes. By studying lensed, or distorted, galaxies, scientists can create better maps of dark matter -- and by studying how dark matter changes over time, they can better understand dark energy.

Weak lensing is a promising method for tackling these questions. The 2010 U.S. National Research Council Decadal Survey on astronomy and astrophysics has ranked mission proposals using this method as high priorities.

The GREAT 2010 challenge is designed to improve weak-lensing know-how. Participants will start with fuzzy pictures of galaxies that have been distorted ever so slightly by invisible dark matter parked in front of them. The effect is so small that you can't see it with your eyes. The problem is even trickier because the telescopes are also distorting the galaxy images to an even greater degree than the dark matter. It takes complex techniques -- mathematical models and image-analysis algorithms -- to tease apart these various influences and ultimately discover how dark matter is warping a galaxy's shape.

"This is an image-analysis challenge. You don't need to be an astronomer or cosmologist to help measure the weak-lensing effect," said Kitching. "This challenge is meant to encourage a multidisciplinary approach to the problem."

Participants will have nine months to solve a series of thousands of puzzles. The winners will be announced at a closing ceremony and workshop held at JPL. Prize-winners can expect some kind of cool gadget -- as well as the satisfaction of having brought the world one step closer to understanding what makes our universe tick.

Wednesday, December 8, 2010

LRO Supports Historic Lunar Impact Mission

0 comments
 Historic Lunar Impact Mission
The lunar rocks brought back to the Earth by the Apollo astronauts were found to have very little water, and to be much drier than rocks on Earth. An explanation for this was that the Moon formed billions of years ago in the solar system's turbulent youth, when a Mars-sized planet crashed into Earth. The impact stripped away our planet's outer layer, sending it into orbit. The pieces later coalesced under their own gravity to form our Moon. Heat from all this mayhem vaporized most of the water in the lunar material, so the water was lost to space.

However, there was still a chance that water might be found in special places on the Moon. Due to the Moon's orientation to the Sun, scientists theorized that deep craters at the lunar poles would be in permanent shadow and thus extremely cold and able to trap volatile material like water as ice perhaps delivered there by comet impacts or chemical reactions with hydrogen carried by the solar wind.

Last year on October 9, NASA's LCROSS (Lunar Crater Remote Observation and Sensing Satellite) intentionally crashed its companion Centaur upper stage into the Cabeus crater near the lunar south pole. The idea was to kick up debris from the bottom of the crater so its composition could be analyzed. The Centaur hit at over 5,600 miles per hour, sending up a plume of material over 12 miles high.

"Seeing mostly pure water ice grains in the plume means water ice was somehow delivered or chemical processes are causing ice to accumulate in large quantities," said Anthony Colaprete, LCROSS project scientist and principal investigator at NASA's Ames Research Center, Moffett Field, Calif. "Furthermore, the diversity and abundance of certain materials called volatiles in the plume, suggest a variety of sources, like comets and asteroids, and an active water cycle within the lunar shadows."

Artist's concept of the LCROSS spacecraft This is an artist's rendering of the LCROSS spacecraft (foreground) and Centaur separation. Credit: NASA
› Larger image

Artist concept of LRO This is an artist's rendering of the Lunar Reconnaissance Orbiter spacecraft. Credit: NASA
› Larger imageHistoric Lunar Impact Mission


LCROSS LRO Diviner Lunar Radiometer Experiment surface temperature map of the south polar region of the moon. The map shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. The LCROSS spacecraft was targeted to impact one of the coldest of these craters, and many of these compounds were observed in the ejecta plume. Credit: UCLA/NASA/Jet Propulsion Laboratory, Pasadena, Calif./Goddard
› Larger image

LCROSS Diviner brightness temperature swath acquired about 90 seconds after the LCROSS impact, the location of which is indicated by the white arrow. Based on the Diviner measurements, the impact site was heated to more than 380°C (1,300°F). Credit: UCLA/NASA/JPL/Goddard
› Larger image LCROSS was a companion mission to NASA's Lunar Reconnaissance Orbiter (LRO) mission.

The two missions were designed to work together, and support from LRO was critical to the success of LCROSS. During impact, LRO, which is normally looking at the lunar surface, was tilted toward the horizon so it could observe the plume. Shortly after the Centaur hit the Moon, LRO flew past debris and gas from the impact while its instruments collected data.

"LRO assisted LCROSS in two primary ways -- selecting the impact site and confirming the LCROSS observations," said Gordon Chin of NASA's Goddard Space Flight Center, Greenbelt, Md., LRO associate project scientist.

"Since observatories on Earth were also planning to view the impact, there were a lot of constraints on the location -- the impact plume had to rise out of the crater and into sunlight, and it had to be visible from Earth," said Chin.

Prior to the impact, LRO's instruments worked together to map and provide details on the polar regions, according to Chin. For example, LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument built up three-dimensional (topographic) maps of the surface. This data was plugged into computer simulations to see how shadows change as the Moon moves in its orbit, so that regions in permanent shadow could be identified. The Lunar Reconnaissance Orbiter Camera (LROC) helped by making images of the actual regions of light and shade, which were used to verify the simulation's accuracy. Finally, LOLA measured the depths of polar craters to find areas where the impact could still be seen from Earth.

Cassini Back to Normal, Ready for Enceladus

0 comments
Cassini Back to Normal, Ready for Enceladus
NASA's Cassini spacecraft resumed normal operations today, Nov. 24. All science instruments have been turned back on, the spacecraft is properly configured and Cassini is in good health. Mission managers expect to get a full stream of data during next week's flyby of the Saturnian moon Enceladus.

Cassini went into safe mode on Nov. 2, when one bit flipped in the onboard command and data subsystem computer. The bit flip prevented the computer from registering an important instruction, and the spacecraft, as programmed, went into the standby mode. Engineers have traced the steps taken by the computer during that time and have determined that all spacecraft responses were proper, but still do not know why the bit flipped.

The flyby on Nov. 30 will bring Cassini to within about 48 kilometers (30 miles) of the surface of Enceladus. At 61 degrees north latitude, this encounter and its twin three weeks later at the same altitude and latitude, are the closest Cassini will come to the northern hemisphere surface of Enceladus during the extended Solstice mission. (Cassini's closest-ever approach to the surface occurred in October 2008, when it dipped to an altitude of 25 kilometers, or 16 miles.)

During the closest part of the Nov. 30 flyby, Cassini's radio science subsystem will make gravity measurements. The results will be compared with those from an earlier flyby of the Enceladus south pole to understand the moon's interior structure better. Cassini's fields and particles instruments will sample the charged particle environment around Enceladus. Other instruments will capture images in visible light and other parts of the light spectrum after Cassini makes its closest approach.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C.

Tuesday, December 7, 2010

Pits, Flows, Other Scenes in New Set of Mars Images

0 comments
Pits, Flows, Other Scenes in New Set of Mars Images
Newly released images from 340 recent observations of Mars by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter show details of a wide assortment of Martian environments.

Strewn boulders and rippled sand lie on the floors of two shadowy, steep-walled pits. Mounds in another region appear to be mud volcanoes, which may have brought fine-grained material to the surface from deep underground. In the Tharsis volcanic region, the intersection of a lava flow with a trough caused by ground collapse allows seeing whether the flow happened before or after the collapse.

These and thousands of other images from HiRISE observations between Oct. 1 and Nov. 1, 2010, are now available on NASA's Planetary Data System (http://pds.jpl.nasa.gov/) and the camera team's website (http://hirise.lpl.arizona.edu).

The camera is one of six instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006. It has made more than 17,000 observations. Each observation covers an area of several square miles on Mars and reveals details as small as desks.

Thursday, December 2, 2010

Solar Observation Mission Celebrates 15 Years

0 comments
Solar Observation Mission Celebrates 15 Years
On December 2, 1995, the Solar and Heliospheric Observatory or SOHO was launched into space from Cape Canaveral aboard an Atlas IIAS rocket. The joint ESA/NASA project began its work observing the sun at a time when the term "solar weather" was almost never used.

Fifteen years later, SOHO has revolutionized what we know about the solar atmosphere and violent solar storms produced by the sun. SOHO has become an expert comet-hunter, nightly news leader and a workhorse that helped create the field of near-real-time space weather reporting as we know it –- but it started as a tool to answer three scientific questions about the sun.

"We were looking for answers to three long-standing problems in solar physics," said Joe Gurman, “the solar neutrino problem, the coronal heating mystery, and the question of what causes solar wind acceleration." Gurman works at NASA's Goddard Space Flight Center in Greenbelt, Md., and has been the U.S. project scientist for SOHO since 1998.

Placed into orbit around the L1 Lagrangian point between Earth and the sun, SOHO was able to observe the sun continuously without Earth ever obstructing its view. With its uninterrupted observations, says Gurman, SOHO has significantly helped with all three original questions.

First, the so-called solar neutrino problem was a conflict between how many neutrinos were predicted by fusion and models of the solar interior versus how many were in fact detected. SOHO confirmed that the interior models were correct and helped show that, instead, the detectors were not finding all the neutrinos since they were changing after they left the sun. Second is the coronal heating mystery, so called because the Sun's outermost atmosphere, or corona, is unexpectedly hundreds of times hotter than the sun's surface. SOHO helped determine that the movement of the Sun’s small-scale magnetic fields themselves could contribute, in principle, sufficient energy to heat the corona. Third, SOHO observed that the acceleration of the solar wind appears to be powered by a special kind of waves that can accelerate certain particles preferentially.

SOHO is perhaps best known for its observations of coronal mass ejections, or CMEs. These blasts of gas and magnetic fields are a fundamental concern for those who track and attempt to forecast space weather. But when SOHO launched in 1995, there was disagreement over what a CME headed for earth looked like. The first ever videos of a CME wave in the lower corona in April of 1997, combined with SOHO’s white light coronagraph observations of the accompanying “halo” CME, changed all that.

Steele Hill, who leads public outreach for SOHO at Goddard, had then only been working for the SOHO team for six months. "It was the first time we had witnessed an event like that. We could track it, predict its direction, and say that in two to three days it will have some impact on Earth.” Hill pulled together some SOHO files and made a movie. . . and it was the first story on the national news that night in April 1997.

After a good 15-years, SOHO isn't easing in to retirement yet. A long archive of data such as SOHO's is necessary to spot some of the tiniest waves that propagate through the body of the sun. Known as buoyancy or gravity-mode waves, these waves only disturb the surface of the sun at a speed of a millimeter per second.

"That's a pretty hard measurement to do," says Gurman. "With 15 years of observations, we just might have a strong enough signal."

In addition, SOHO is still our only solar observatory to have gathered images of the sun during a solar maximum. The last maximum was in 2000. As we move into the next peak in 2013, it will be SOHO's legacy that allows scientists to compare and contrast what we see now in newer missions such as the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory (STEREO) to what was seen then.

Tuesday, November 30, 2010

Thin Air - Cassini Finds Ethereal Atmosphere at Rhea

0 comments
Cassini Finds Ethereal Atmosphere at Rhea
NASA's Cassini spacecraft has detected a very tenuous atmosphere known as an exosphere, infused with oxygen and carbon dioxide around Saturn's icy moon Rhea. This is the first time a spacecraft has directly captured molecules of an oxygen atmosphere – albeit a very thin one -- at a world other than Earth.

The oxygen appears to arise when Saturn's magnetic field rotates over Rhea. Energetic particles trapped in the planet's magnetic field pepper the moon’s water-ice surface. They cause chemical reactions that decompose the surface and release oxygen. The source of the carbon dioxide is less certain.

Oxygen at Rhea's surface is estimated to be about 5 trillion times less dense than what we have at Earth. But the new results show that surface decomposition could contribute abundant molecules of oxygen, leading to surface densities roughly 100 times greater than the exospheres of either Earth's moon or Mercury. The formation of oxygen and carbon dioxide could possibly drive complex chemistry on the surfaces of many icy bodies in the universe.

"The new results suggest that active, complex chemistry involving oxygen may be quite common throughout the solar system and even our universe," said lead author Ben Teolis, a Cassini team scientist based at Southwest Research Institute in San Antonio. "Such chemistry could be a prerequisite for life. All evidence from Cassini indicates that Rhea is too cold and devoid of the liquid water necessary for life as we know it."

Releasing oxygen through surface irradiation could help generate conditions favorable for life at an icy body other than Rhea that has liquid water under the surface, Teolis said. If the oxygen and carbon dioxide from the surface could somehow get transported down to a sub-surface ocean, that would provide a much more hospitable environment for more complex compounds and life to form. Scientists are keen to investigate whether life on icy moons with an ocean is possible, though they have not yet detected it.

The tenuous atmosphere with oxygen and carbon dioxide makes Rhea, Saturn's second largest moon, unique in the Saturnian system. Titan has a thick nitrogen-methane atmosphere, but very little carbon dioxide and oxygen.

"Rhea is turning out to be much more interesting than we had imagined," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The Cassini finding highlights the rich diversity of Saturn’s moons and gives us clues on how they formed and evolved."

Scientists had suspected Rhea could have a thin atmosphere with oxygen and carbon dioxide, based on remote observations of Jupiter's icy moons by NASA's Galileo spacecraft and Hubble Space Telescope. Other Cassini observations detected oxygen escaping from icy Saturn ring particles after ultraviolet bombardment. But Cassini was able to detect oxygen and carbon dioxide in the exosphere directly because of how close it flew to Rhea – 101 kilometers, or 63 miles – and its special suite of instruments.

In the new study, scientists combined data from Cassini's ion and neutral mass spectrometer and the Cassini plasma spectrometer during flybys on Nov. 26, 2005, Aug. 30, 2007, and March 2, 2010. The ion and neutral mass spectrometer "tasted" peak densities of oxygen of around 50 billion molecules per cubic meter (1 billion molecules per cubic foot). It detected peak densities of carbon dioxide of around 20 billion molecules per cubic meter (about 600 million molecules per cubic foot).

The plasma spectrometer saw clear signatures of flowing streams of positive and negative ions, with masses that corresponded to ions of oxygen and carbon dioxide.

"How exactly the carbon dioxide is released is still a puzzle," said co-author Geraint Jones, a Cassini team scientist based at University College London in the U.K. "But with Cassini's diverse suite of instruments observing Rhea from afar, as well as sniffing the gas surrounding it, we hope to solve the puzzle."

The carbon dioxide may be the result of “dry ice” trapped from the primordial solar nebula, as is the case with comets, or it may be due to similar irradiation processes operating on the organic molecules trapped in the water ice of Rhea. The carbon dioxide could also come from carbon-rich materials deposited by tiny meteors that bombarded Rhea's surface.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The ion and neutral mass spectrometer team and the Cassini plasma spectrometer team are based at Southwest Research Institute, San Antonio.

Monday, November 29, 2010

Watch Construction Of NASA's New Mars Rover Live On The Web

0 comments

PASADENA, Calif. -- A newly installed webcam is giving the public an opportunity to watch technicians assemble and test the next NASA Mars rover, one of the most technologically challenging interplanetary missions ever designed.

NASA's Mars Science Laboratory, also known as the Curiosity rover, is in a clean room at the agency's Jet Propulsion Laboratory in Pasadena, Calif. The webcam, affectionately called "Curiosity Cam," provides the video feed, without audio, from a viewing gallery above the clean room floor. The video will be supplemented periodically by live Web chats featuring Curiosity team members answering questions about the rover. Currently, work in the clean room begins at 8 a.m. PDT Monday through Friday.

Clean room technicians have been busy adding new avionics and instruments to the rover. Beginning Friday, viewers will see technicians carefully add the rover's suspension system and its six wheels. On Monday, Oct. 25, the rover's 7-foot-long robotic arm will be carefully lifted and attached to the front of the rover.

The camera shows a portion of the clean room that is typically active; but the rover, spacecraft components and technicians may move out of view as work shifts to other areas of the room. When activity takes place in other testing facilities around JPL, the clean room may be empty. The camera also may be turned off periodically for maintenance or due to technical issues.

Months of assembly and testing remain before the car-sized rover is ready for launch from Cape Canaveral, Fla. The rover and spacecraft components will ship to NASA's Kennedy Space Center in Florida next spring. The launch will occur between Nov. 25 and Dec. 18, 2011. Curiosity will arrive on Mars in August 2012.

Curiosity is engineered to drive longer distances over rougher terrain than previous rovers with a science payload 10 times the mass of instruments on NASA's Spirit and Opportunity.

The new, large rover will investigate whether the landing region has had environments favorable for supporting microbial life and for preserving evidence about whether life existed on the Red Planet

Stripes are Back in Season on Jupiter

0 comments
Stripes are Back in Season on Jupiter

PASADENA, Calif. – New NASA images support findings that one of Jupiter's stripes that "disappeared" last spring is now showing signs of a comeback. These new observations will help scientists better understand the interaction between Jupiter's winds and cloud chemistry.

Earlier this year, amateur astronomers noticed that a longstanding dark-brown stripe, known as the South Equatorial Belt, just south of Jupiter's equator, had turned white. In early November, amateur astronomer Christopher Go of Cebu City, Philippines, saw an unusually bright spot in the white area that was once the dark stripe. This phenomenon piqued the interest of scientists at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and elsewhere.

After follow-up observations in Hawaii with NASA's Infrared Telescope Facility, the W.M. Keck Observatory and the Gemini Observatory telescope, scientists now believe the vanished dark stripe is making a comebackStripes are Back in Season on Jupiter

"The reason Jupiter seemed to 'lose' this band – camouflaging itself among the surrounding white bands – is that the usual downwelling winds that are dry and keep the region clear of clouds died down," said Glenn Orton, a research scientist at JPL. "One of the things we were looking for in the infrared was evidence that the darker material emerging to the west of the bright spot was actually the start of clearing in the cloud deck, and that is precisely what we saw."

This white cloud deck is made up of white ammonia ice. When the white clouds float at a higher altitude, they obscure the missing brown material, which floats at a lower altitude. Every few decades or so, the South Equatorial Belt turns completely white for perhaps one to three years, an event that has puzzled scientists for decades. This extreme change in appearance has only been seen with the South Equatorial Belt, making it unique to Jupiter and the entire solar system.

The white band wasn't the only change on the big, gaseous planet. At the same time, Jupiter's Great Red Spot became a darker red color. Orton said the color of the spot – a giant storm on Jupiter that is three times the size of Earth and a century or more old – will likely brighten a bit again as the South Equatorial Belt makes its comeback.


The South Equatorial Belt underwent a slight brightening, known as a "fade," just as NASA's New Horizons spacecraft was flying by on its way to Pluto in 2007. Then there was a rapid "revival" of its usual dark color three to four months later. The last full fade and revival was a double-header event, starting with a fade in 1989, revival in 1990, then another fade and revival in 1993. Similar fades and revivals have been captured visually and photographically back to the early 20th century, and they are likely to be a long-term phenomenon in Jupiter's atmosphere.

Scientists are particularly interested in observing this latest event because it's the first time they've been able to use modern instruments to determine the details of the chemical and dynamical changes of this phenomenon. Observing this event carefully may help to refine the scientific questions to be posed by NASA's Juno spacecraft, due to arrive at Jupiter in 2016, and a larger, proposed mission to orbit Jupiter and explore its satellite Europa after 2020.

The event also signifies another close collaboration between professional and amateur astronomers. The amateurs, located worldwide, are often well equipped with instrumentation and are able to track the rapid developments of planets in the solar system. These amateurs are collaborating with professionals to pursue further studies of the changes that are of great value to scientists and researchers everywhere.

"I was fortunate to catch the outburst," said Christopher Go, referring to the first signs that the band was coming back. "I had a meeting that evening and it went late. I caught the outburst just in time as it was rising. Had I imaged earlier, I would not have caught it," he said. Go, who also conducts in the physics department at the University of San Carlos, Cebu City, Philippines, witnessed the disappearance of the stripe earlier this year, and in 2007 he was the first to catch the stripe's return. "I was able to catch it early this time around because I knew exactly what to look for."

Friday, November 26, 2010

Cassini Back to Normal, Ready for Enceladus

0 comments
Cassini Mission Status

NASA's Cassini spacecraft resumed normal operations today, Nov. 24. All science instruments have been turned back on, the spacecraft is properly configured and Cassini is in good health. Mission managers expect to get a full stream of data during next week's flyby of the Saturnian moon Enceladus.

Cassini went into safe mode on Nov. 2, when one bit flipped in the onboard command and data subsystem computer. The bit flip prevented the computer from registering an important instruction, and the spacecraft, as programmed, went into the standby mode. Engineers have traced the steps taken by the computer during that time and have determined that all spacecraft responses were proper, but still do not know why the bit flipped.

The flyby on Nov. 30 will bring Cassini to within about 48 kilometers (30 miles) of the surface of Enceladus. At 61 degrees north latitude, this encounter and its twin three weeks later at the same altitude and latitude, are the closest Cassini will come to the northern hemisphere surface of Enceladus during the extended Solstice mission. (Cassini's closest-ever approach to the surface occurred in October 2008, when it dipped to an altitude of 25 kilometers, or 16 miles.)

During the closest part of the Nov. 30 flyby, Cassini's radio science subsystem will make gravity measurements. The results will be compared with those from an earlier flyby of the Enceladus south pole to understand the moon's interior structure better. Cassini's fields and particles instruments will sample the charged particle environment around Enceladus. Other instruments will capture images in visible light and other parts of the light spectrum after Cassini makes its closest approach.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C.

Thursday, November 25, 2010

Discovery's Launch No Earlier Than Dec. 17

0 comments
NASA managers have targeted space shuttle Discovery's launch for no earlier than Dec. 17. Shuttle managers determined more tests and analysis are needed before proceeding with the STS-133 mission. The launch status meeting planned for Monday, Nov. 29, has been postponed and will be rescheduled.

The Program Requirements Control Board reviewed on Wednesday repairs and engineering evaluations associated with cracks on two 21-foot-long, U-shaped aluminum brackets, called stringers, on the shuttle's external tank. Managers decided the analysis and tests required to launch Discovery safely are not complete. The work will continue through next week.

The next status review by the PRCB will be Thursday, Dec. 2. If managers clear Discovery for launch on Dec. 17, the preferred time is about 8:51 p.m. EST.

Wednesday, November 24, 2010

Missing Piece Inspires New Look at Mars Puzzle

0 comments
Missing Piece Inspires New Look at Mars Puzzle
PASADENA, Calif. -- Experiments prompted by a 2008 surprise from NASA's Phoenix Mars Lander suggest that soil examined by NASA's Viking Mars landers in 1976 may have contained carbon-based chemical building blocks of life.

"This doesn't say anything about the question of whether or not life has existed on Mars, but it could make a big difference in how we look for evidence to answer that question," said Chris McKay of NASA's Ames Research Center, Moffett Field, Calif. McKay coauthored a study published online by the Journal of Geophysical Research - Planets, reanalyzing results of Viking's tests for organic chemicals in Martian soil.

The only organic chemicals identified when the Viking landers heated samples of Martian soil were chloromethane and dichloromethane -- chlorine compounds interpreted at the time as likely contaminants from cleaning fluids. But those chemicals are exactly what the new study found when a little perchlorate -- the surprise finding from Phoenix -- was added to desert soil from Chile containing organics and analyzed in the manner of the Viking tests.

"Our results suggest that not only organics, but also perchlorate, may have been present in the soil at both Viking landing sites," said the study's lead author, Rafael Navarro-González of the National Autonomous University of Mexico, Mexico City.

Organics can come from non-biological or biological sources. Many meteorites raining onto Mars and Earth for the past 5 billion years contain organics. Even if Mars has never had life, scientists before Viking anticipated that Martian soil would contain organics from meteorites.
Missing Piece Inspires New Look at Mars Puzzle

"The lack of organics was a big surprise from the Vikings," McKay said. "But for 30 years we were looking at a jigsaw puzzle with a piece missing. Phoenix has provided the missing piece: perchlorate. The perchlorate discovery by Phoenix was one of the most important results from Mars since Viking." Perchlorate, an ion of chlorine and oxygen, becomes a strong oxidant when heated. "It could sit there in the Martian soil with organics around it for billions of years and not break them down, but when you heat the soil to check for organics, the perchlorate destroys them rapidly," McKay said.

This interpretation proposed by Navarro-González and his four co-authors challenges the interpretation by Viking scientists that Martian organic compounds were not present in their samples at the detection limit of the Viking experiment. Instead, the Viking scientists interpreted the chlorine compounds as contaminants. Upcoming missions to Mars and further work on meteorites from Mars are expected to help resolve this question.

The Curiosity rover that NASA's Mars Science Laboratory mission will deliver to Mars in 2012 will carry the Sample Analysis at Mars (SAM) instrument provided by NASA Goddard Space Flight Center, Greenbelt, Md. In contrast to Viking and Phoenix, Curiosity can rove and thus analyze a wider variety of rocks and samples. SAM can check for organics in Martian soil and powdered rocks by baking samples to even higher temperatures than Viking did, and also by using an alternative liquid-extraction method at much lower heat. Combining these methods on a range of samples may enable further testing of the new report's hypothesis that oxidation by heated perchlorates that might have been present in the Viking samples was destroying organics.

One reason the chlorinated organics found by Viking were interpreted as contaminants from Earth was that the ratio of two isotopes of chlorine in them matched the three-to-one ratio for those isotopes on Earth. The ratio for them on Mars has not been clearly determined yet. If it is found to be much different than Earth's, that would support the 1970s interpretation.

If organic compounds can indeed persist in the surface soil of Mars, contrary to the predominant thinking for three decades, one way to search for evidence of life on Mars could be to check for types of large, complex organic molecules, such as DNA, that are indicators of biological activity. "If organics cannot persist at the surface, that approach would not be wise, but if they can, it's a different story," McKay said.

The Phoenix mission was led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Phoenix finding of perchlorate was reported by JPL's Michael Hecht and co-authors. JPL, a division of the California Institute of Technology, Pasadena, also manages Mars Science Laboratory for the NASA Exploration Missions Directorate, Washington.

Tuesday, November 23, 2010

NASA Mars Rover Images Honor Apollo 12

0 comments
NASA Mars Rover Images
PASADENA, Calif. -- NASA's Mars Exploration Rover Opportunity has visited and photographed two craters informally named for the spacecraft that carried men to the moon 41 years ago this week.

Opportunity drove past "Yankee Clipper" crater on Nov. 4 and reached "Intrepid crater" on Nov. 9. For NASA's Apollo 12, the second mission to put humans onto the moon, the command and service module was called Yankee Clipper, piloted by Dick Gordon, and the lunar module was named Intrepid, piloted by Alan Bean and commanded by the late Pete Conrad. The Intrepid landed on the moon with Bean and Conrad on Nov. 19, 1969, while Yankee Clipper orbited overhead. Their landing came a mere four months after Apollo 11's first lunar landing.

This week, Bean wrote to the Mars Exploration Rover team: "I just talked with Dick Gordon about the wonderful honor you have bestowed upon our Apollo 12 spacecraft. Forty-one years ago today, we were approaching the moon in Yankee Clipper with Intrepid in tow. We were excited to have the opportunity to perform some important exploration of a place in the universe other than planet Earth where humans had not gone before. We were anxious to give it our best effort. You and your team have that same opportunity. Give it your best effort."

Rover science team member James Rice, of NASA's Goddard Space Flight Center, Greenbelt, Md., suggested using the Apollo 12 names. He was applying the rover team's convention of using names of historic ships of exploration for the informal names of craters that Opportunity sees in the Meridian Planum region of Mars.

"The Apollo missions were so inspiring when I was young, I remember all the dates. When we were approaching these craters, I realized we were getting close to the Nov. 19 anniversary for Apollo 12," Rice said. He sent Bean and Gordon photographs that Opportunity took of the two craters.

After a two-day stop to photograph the rocks exposed at Intrepid, Opportunity continued on a long-term trek toward Endeavour crater, a highly eroded crater about 1,000 times wider than Intrepid. Endeavour's name comes from the ship of James Cook's first Pacific voyage.

During a drive of 116.9 meters (383.5 feet) on Nov. 14, Opportunity's "odometer" passed 25 kilometers (15.53 miles). That is more than 40 times the driving-distance goal set for Opportunity to accomplish during its original three-month prime mission in 2004.

Mars Exploration Project Manager John Callas, of NASA's Jet Propulsion Laboratory, Pasadena, Calif., said, "Importantly, it's not how far the rovers have gone but how much exploration and science discovery they have accomplished on behalf of all humankind."

At the beginning of Opportunity's mission, the rover landed inside "Eagle crater," about the same size as Intrepid crater. The team's name for that landing-site crater paid tribute to the lunar module of Apollo 11, the first human landing on the moon. Opportunity spent two months inside Eagle crater, where it found multiple lines of evidence for a wet environment in the area's ancient past.

The rover team is checking regularly for Opportunity's twin, Spirit, in case the increasing daily solar energy available at Spirit's location enables the rover to reawaken and resume communication. No signal from Spirit has been received since March 22. Spring began last week in the southern hemisphere of Mars

Sunday, November 21, 2010

NASA'S Fermi Telescope Discovers Giant Structure In Our Galaxy

0 comments
NASA'S Fermi Telescope
WASHINGTON -- NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and may be the remnant of an eruption from a supersized black hole at the center of our galaxy.

"What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center," said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who first recognized the feature. "We don't fully understand their nature or origin."

The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old. A paper about the findings has been accepted for publication in The Astrophysical Journal.

Finkbeiner and Harvard graduate students Meng Su and Tracy Slatyer discovered the bubbles by processing publicly available data from Fermi's Large Area Telescope (LAT). The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest-energy form of light.

Other astronomers studying gamma rays hadn't detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this so-called diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure's shape and emissions suggest it was formed as a result of a large and relatively rapid energy release -- the source of which remains a mystery.

One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way's black hole has such a jet today, it may have in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way's center several million years ago.

"In other galaxies, we see that starbursts can drive enormous gas outflows," said David Spergel, a scientist at Princeton University in New Jersey. "Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics."

Hints of the bubbles appear in earlier spacecraft data. X-ray observations from the German-led Roentgen Satellite suggested subtle evidence for bubble edges close to the galactic center, or in the same orientation as the Milky Way. NASA's Wilkinson Microwave Anisotropy Probe detected an excess of radio signals at the position of the gamma-ray bubbles.

The Fermi LAT team also revealed Tuesday the instrument's best picture of the gamma-ray sky, the result of two years of data collection.

"Fermi scans the entire sky every three hours, and as the mission continues and our exposure deepens, we see the extreme universe in progressively greater detail," said Julie McEnery, Fermi project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.
NASA's Fermi is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

"Since its launch in June 2008, Fermi repeatedly has proven itself to be a frontier facility, giving us new insights ranging from the nature of space-time to the first observations of a gamma-ray nova," said Jon Morse, Astrophysics Division director at NASA Headquarters in Washington. "These latest discoveries continue to demonstrate Fermi's outstanding performance."

Thursday, November 18, 2010

Herschel's Hidden Talent: Digging Up Magnified Galaxies

0 comments
Digging Up Magnified Galaxies
PASADENA, Calif. -- It turns out the Herschel Space Observatory has a trick up its sleeve. The telescope, a European Space Agency mission with important NASA contributions, has proven to be excellent at finding magnified, faraway galaxies. Like little kids probing patches of dirt for insects, astronomers can use these new cosmic magnifying lenses to study galaxies that are hidden in dust.

"I was surprised to learn that Herschel is so good at finding these cosmic lenses," said Asantha Cooray of the University of California, Irvine. "Locating new lenses is an arduous task that involves slogging through tons of data. With Herschel, we can find a lot of them much more efficiently." Cooray is a co-author of a paper about the discovery, appearing in the Nov. 5 issue of the journal Science. The lead author is Mattia Negrello of the Open University in the United Kingdom.
Digging Up Magnified Galaxies

A cosmic magnifying lens occurs when a massive galaxy or cluster of galaxies bends light from a more distant galaxy into a warped and magnified image. Sometimes, a galaxy is so warped that it appears as a ring -- an object known as an Einstein ring after Albert Einstein who first predicted the phenomenon, referred to as gravitational lensing. The effect is similar to what happens when you look through the bottom of a soda bottle or into a funhouse mirror.

These lenses are incredibly powerful tools for studying the properties of distant galaxies as well as the mysterious stuff -- dark matter and dark energy -- that makes up a whopping 96 percent of our universe (see http://www.jpl.nasa.gov/news/news.cfm?release=2010-272 ).

"With these lenses, we can do cosmology and study galaxies that are too distant and faint to be seen otherwise," said Cooray.

Cooray and a host of international researchers made the initial discovery using Herschel. Launched in May 2009, this space mission is designed to see longer-wavelength light than that we see with our eyes -- light in the far-infrared and submillimeter portion of the electromagnetic spectrum. Scanning Herschel images of thousands of galaxies, the researchers noticed five never-before-seen objects that jumped out as exceptionally bright.

At that time, the galaxies were suspected of being magnified by cosmic lenses, but careful and extensive follow-up observations were required. Numerous ground-based telescopes around the world participated in the campaign, including the National Radio Astronomy Observatory's Green Bank Telescope in West Virginia, and three telescopes in Hawaii: the W.M. Keck Observatory, the California Institute of Technology's Submillimeter Observatory, and the Smithsonian Astrophysical Observatory's Submillimeter Array.

The results showed that all five of the bright galaxies were indeed being magnified by foreground galaxies. The galaxies are really far away -- they are being viewed at a time when the universe was only two to four billion years old, less than a third of its current age.

The Herschel astronomers suspect that they are just scratching the surface of a much larger population of magnified galaxies to be uncovered. The images studied so far make up just two percent of the entire planned survey, a program called the Herschel Astrophysical Terahertz Large Area Survey, or Herschel-ATLAS.

"The fact that this Herschel team saw five lensed galaxies is very exciting," said Paul Goldsmith, the U.S. project scientist for Herschel at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "This means that we can probably pick out hundreds of new lensed galaxies in the Herschel data."

The five galaxies are young and bursting with dusty, new stars. The dust is so thick, the galaxies cannot be seen at all with visible-light telescopes. Herschel can see the faint warmth of the dust, however, because it glows at far-infrared and submillimeter wavelengths. Because the galaxies are being magnified, astronomers can now dig deeper into these dusty, exotic places and learn more about what makes them tick.

Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at NASA's Jet Propulsion Laboratory. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA.

Wednesday, November 17, 2010

Detailed Dark Matter Map Yields Clues to Galaxy Cluster Growth

0 comments
Detailed Dark Matter Map
Astronomers using NASA's Hubble Space Telescope took advantage of a giant cosmic magnifying glass to create one of the sharpest and most detailed maps of dark matter in the universe. Dark matter is an invisible and unknown substance that makes up the bulk of the universe's mass.

The new dark matter observations may yield new insights into the role of dark energy in the universe's early formative years. The result suggests that galaxy clusters may have formed earlier than expected, before the push of dark energy inhibited their growth. A mysterious property of space, dark energy fights against the gravitational pull of dark matter. Dark energy pushes galaxies apart from one another by stretching the space between them, thereby suppressing the formation of giant structures called galaxy clusters. One way astronomers can probe this primeval tug-of-war is through mapping the distribution of dark matter in clusters.

A team led by Dan Coe at NASA's Jet Propulsion Laboratory in Pasadena, Calif., used Hubble's Advanced Camera for Surveys to chart the invisible matter in the massive galaxy cluster Abell 1689, located 2.2 billion light-years away. The cluster's gravity, the majority of which comes from dark matter, acts like a cosmic magnifying glass, bending and amplifying the light from distant galaxies behind it. This effect, called gravitational lensing, produces multiple, warped, and greatly magnified images of those galaxies, like the view in a funhouse mirror. By studying the distorted images, astronomers estimated the amount of dark matter within the cluster. If the cluster's gravity only came from the visible galaxies, the lensing distortions would be much weaker.

Based on their higher-resolution mass map, Coe and his collaborators confirm previous results showing that the core of Abell 1689 is much denser in dark matter than expected for a cluster of its size, based on computer simulations of structure growth. Abell 1689 joins a handful of other well-studied clusters found to have similarly dense cores. The finding is surprising, because the push of dark energy early in the universe's history would have stunted the growth of all galaxy clusters.

"Galaxy clusters, therefore, would had to have started forming billions of years earlier in order to build up to the numbers we see today," Coe explains. "At earlier times, the universe was smaller and more densely packed with dark matter. Abell 1689 appears to have been well fed at birth by the dense matter surrounding it in the early universe. The cluster has carried this bulk with it through its adult life to appear as we observe it today."

Tuesday, November 16, 2010

MAVEN Mission to Investigate How Sun Steals Martian Atmosphere

0 comments
MAVEN Mission to Investigate
The Red Planet bleeds. Not blood, but its atmosphere, slowly trickling away to space. The culprit is our sun, which is using its own breath, the solar wind, and its radiation to rob Mars of its air. The crime may have condemned the planet's surface, once apparently promising for life, to a cold and sterile existence.

Features on Mars resembling dry riverbeds, and the discovery of minerals that form in the presence of water, indicate that Mars once had a thicker atmosphere and was warm enough for liquid water to flow on the surface. However, somehow that thick atmosphere got lost in space. It appears Mars has been cold and dry for billions of years, with an atmosphere so thin, any liquid water on the surface quickly boils away while the sun's ultraviolet radiation scours the ground.
MAVEN Mission to Investigate


Such harsh conditions are the end of the road for known forms of life. Although it's possible that martian life went underground, where liquid water may still exist and radiation can't reach.

The lead suspect for the theft is the sun, and its favorite M.O. may be the solar wind. All planets in our solar system are constantly blasted by the solar wind, a thin stream of electrically charged gas that continuously blows from the sun's surface into space. On Earth, our planet's global magnetic field shields our atmosphere by diverting most of the solar wind around it. The solar wind’s electrically charged particles, ions and electrons, have difficulty crossing magnetic fields.

"Mars can't protect itself from the solar wind because it no longer has a shield, the planet's global magnetic field is dead," said Bruce Jakosky of the University of Colorado, Boulder. Jakosky is the Principal Investigator for NASA's MAVEN mission, which will investigate what is responsible for the loss of the martian atmosphere. NASA selected the MAVEN (Mars Atmosphere and Volatile Evolution Mission) on September 15, 2008.

Mars lost its global magnetic field in its youth billions of years ago. Once its planet-wide magnetic field disappeared, Mars' atmosphere was exposed to the solar wind and most of it could have been gradually stripped away. "Fossil" magnetic fields remaining in ancient surfaces and other local areas on Mars don't provide enough coverage to shield much of the atmosphere from the solar wind.