Search This Blog
Nasa Building
Reciprocal Links - Contact Me
Click Here For Reciprocal Link Exchange If you want link from this site Click Here
or Contact below Email address,We will add your link.
Email Me: nasaspaceinfo@gmail.com
or Contact below Email address,We will add your link.
Email Me: nasaspaceinfo@gmail.com
Nasa Space Station
NASA's planned heavy-lift cargo rocket
NASA Earthrise
Nasa ares rocket
shuttle launch
Space Shuttle Exploration
Space Station Followers
Nasa International Space Station
Nasa first man on the moon
NASA First Launch Rocket
Space Station
shuttle mission
Blog Archive
-
▼
2011
(67)
-
▼
January
(16)
- More Asteroids Could Have Made Life's Ingredients
- NASA Comet Hunter Spots Its Valentine
- Runaway Star Plows Through Space
- NASA's First Solar Sail NanoSail-D Deploys in Low-...
- Voyager Celebrates 25 Years Since Uranus Visit
- Cosmonauts to Perform 27th Russian Space Station S...
- NASA Tests New Propulsion System For Robotic Lande...
- GOES-13 Satellite Captures Powerful Snowmaker Leav...
- Cassini Rocks Rhea Rendezvous
- The Two-faced Whirlpool Galaxy
- NASA Telescopes Help Find Most Distant Galaxy Cluster
- NASA Research Team Reveals Moon Has Earth-Like Core
- NASA's Hubble Finds that Puny Stars Pack a Big Punch
- Major Surgery Complete for Deep Space Network Antenna
- NASA's LRO Creating Unprecedented Topographic Map ...
- Andromeda is So Hot 'n' Cold
-
▼
January
(16)
Nasa stars
Space Station
space exploration
Monday, January 31, 2011
More Asteroids Could Have Made Life's Ingredients
at
1:07 AM
Posted by
David Lindahl
0
comments
A wider range of asteroids were capable of creating the kind of amino acids used by life on Earth, according to new NASA research.
Amino acids are used to build proteins, which are used by life to make structures like hair and nails, and to speed up or regulate chemical reactions. Amino acids come in two varieties that are mirror images of each other, like your hands. Life on Earth uses the left-handed kind exclusively. Since life based on right-handed amino acids would presumably work fine, scientists are trying to find out why Earth-based life favored left-handed amino acids
In March, 2009, researchers at NASA's Goddard Space Flight Center in Greenbelt, Md., reported the discovery of an excess of the left-handed form of the amino acid isovaline in samples of meteorites that came from carbon-rich asteroids. This suggests that perhaps left-handed life got its start in space, where conditions in asteroids favored the creation of left-handed amino acids. Meteorite impacts could have supplied this material, enriched in left-handed molecules, to Earth. The bias toward left-handedness would have been perpetuated as this material was incorporated into emerging life.
In the new research, the team reports finding excess left-handed isovaline (L-isovaline) in a much wider variety of carbon-rich meteorites. "This tells us our initial discovery wasn't a fluke; that there really was something going on in the asteroids where these meteorites came from that favors the creation of left-handed amino acids," says Dr. Daniel Glavin of NASA Goddard. Glavin is lead author of a paper about this research published online in Meteoritics and Planetary Science January 17.
"This research builds on over a decade of work on excesses of left-handed isovaline in carbon-rich meteorites," said Dr. Jason Dworkin of NASA Goddard, a co-author on the paper.
"Initially, John Cronin and Sandra Pizzarello of Arizona State University showed a small but significant excess of L-isovaline in two CM2 meteorites. Last year we showed that L-isovaline excesses appear to track with the history of hot water on the asteroid from which the meteorites came. In this work we have studied some exceptionally rare meteorites which witnessed large amounts of water on the asteroid. We were gratified that the meteorites in this study corroborate our hypothesis," explained Dworkin.
"Initially, John Cronin and Sandra Pizzarello of Arizona State University showed a small but significant excess of L-isovaline in two CM2 meteorites. Last year we showed that L-isovaline excesses appear to track with the history of hot water on the asteroid from which the meteorites came. In this work we have studied some exceptionally rare meteorites which witnessed large amounts of water on the asteroid. We were gratified that the meteorites in this study corroborate our hypothesis," explained Dworkin.
L-isovaline excesses in these additional water-altered type 1 meteorites (i.e. CM1 and CR1) suggest that extra left-handed amino acids in water-altered meteorites are much more common than previously thought, according to Glavin. Now the question is what process creates extra left-handed amino acids. There are several options, and it will take more research to identify the specific reaction, according to the team.
However, "liquid water seems to be the key," notes Glavin. "We can tell how much these asteroids were altered by liquid water by analyzing the minerals their meteorites contain. The more these asteroids were altered, the greater the excess L-isovaline we found. This indicates some process involving liquid water favors the creation of left-handed amino acids."
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment