Atlantis carried many science and research experiments in its middeck during NASA’s last shuttle flight, STS-135, in July. Among these was a plant experiment developed at Kennedy Space Center’s Space Life Sciences Laboratory (SLSL) that could have an impact on long duration missions to the moon or Mars.
Principal Investigators Dr. Gary Stutte and Dr. Michael Roberts with QinetiQ NA, and NASA Project Scientist Dr. Howard Levine created the Biological Research in Canisters-Symbiotic Nodulation in a Reduced Gravity Environment (BRIC-SyNRGE). A first of its kind to fly on a space shuttle, the purpose of the experiment was to study the symbiotic relationship between plants similar to alfalfa, which is in the legume family, and specific nitrogen-reacting bacteria in microgravity.
According to Stutte, the bacteria were introduced to each plant sample’s root hairs in order to study the effect. What he and the SyNRGE team are hoping to find is that the plants have formed specialized nodules where the bacteria can convert atmospheric nitrogen into a form the plants can use to produce proteins.
Principal Investigators Dr. Gary Stutte and Dr. Michael Roberts with QinetiQ NA, and NASA Project Scientist Dr. Howard Levine created the Biological Research in Canisters-Symbiotic Nodulation in a Reduced Gravity Environment (BRIC-SyNRGE). A first of its kind to fly on a space shuttle, the purpose of the experiment was to study the symbiotic relationship between plants similar to alfalfa, which is in the legume family, and specific nitrogen-reacting bacteria in microgravity.
According to Stutte, the bacteria were introduced to each plant sample’s root hairs in order to study the effect. What he and the SyNRGE team are hoping to find is that the plants have formed specialized nodules where the bacteria can convert atmospheric nitrogen into a form the plants can use to produce proteins.
0 comments:
Post a Comment